
Silo - Bug # 533: Memory leak: calling DBGetUcdmesh() for a quad mesh

Status: Resolved Priority: Normal

Author: Jeffrey Grandy Category:

Created: 01/04/2011 Assigned to: Mark Miller

Updated: 09/12/2012 Due date:

Likelihood: 2 - Rare

Severity: 3 - Major Irritation

Silo Found in Version: trunk

OS: All

Support Group: Any

Subject: Memory leak: calling DBGetUcdmesh() for a quad mesh

Description: DBGetUcdmesh() is allocating memory and

returns a null pointer when MeshName is a

quad mesh. The application cannot free this

memory because a null pointer was returned.

The leak appears to be quite large, and may

be proportional to the number of nodes in

the mesh. See the snippet below.

 DBShowErrors(suspend, NULL) ;

 DBucdmesh* dbucdm = DBGetUcdmesh(silofile, MeshName) ;

 if (dbucdm != 0) { ... }

 DBShowErrors(resume, NULL) ;

History

09/11/2012 10:35 pm - Mark Miller

- Status changed from New to Pending

- Assigned to set to Mark Miller

- Target version set to 4.9

- Estimated time set to 6.00

- Likelihood changed from 3 - Occasional to 2 - Rare

I have resolved this issue. Testing it revealed a comedy of issues with PDB driver in the way logic was written to test object types.

09/12/2012 03:00 pm - Mark Miller

- Status changed from Pending to Resolved

The PJ_GetObject method in the PDB driver had an argument for caller to pass in to return a string representation of the silo object type. After calling

PJ_GetObject, that string was compared to the correct Silo object type the function is querying and would then fail the read if the object type strings

didn't agree. This is a hold over from the days when the PJ routines for Silo were written as though that code was going to live apart from Silo as its

own independent library. In any event, I moved the code to check object types into PJ_GetObject where I can abort allocations if the object types don't

agree. That fixes the leaks in these cicumstances. I also adjusted multi_test.c test client to test for a variety of bad reads of this ilk.

02/20/2013 1/1

