May 23, 2011 RFCTHG 2011-05-12.v1

RFC: Load Core File Driver From Image

John Mainzer

While the HDF5 API currently allows the core file driver to be opened with data taken
from an existing file, there have been user requests to modify the API to allow the user
to both create and read in core HDF5 file images with the core file driver without
requiring disk 1/0.

This RFC proposes APl extensions to allow these operations.

1 Background

On systems with sufficient main memory, the core file driver allows fast HDF5 file access, by creating
the HDF5 file in RAM, supporting all normal HDF5 operations on the file, and if desired, storing the
file to disk on flush or file close. The core file driver also allows an existing file on disk to be loaded
into RAM for fast access via the core file driver.

2 Goal

In some cases, it would be useful to create an image of an HDF5 file on one process, transmit it to a
second, and then read it without any mandatory file I/O on either end, and with minimal overhead.
For large images, minimizing the overhead means sharing buffers between the HDF5 library and the
application so as to avoid large memory copies. As sharing buffers like this has a number of potential
problems, the option of copying buffers must also be maintained.

In this RFC, | propose HDF5 APl extensions and modifications to support these operations.

3 Use Cases

The following list of use cases is an explicit statement of the use cases driving the requirements for
this document. Only the first two use cases are of interest to LLNL, the remaining use cases are
unrelated to LLNL’s.

Use Case 1: Reading an HDF5 File Image
Given an image of an HDFS5 file in memory, open it, and read it without any file system 1/0.

This is mostly a matter of using a memory based file driver (just the core file driver for now), to open
and read the image. LLNL requires that when the image is opened read-only, it is possible to avoid
the necessity of transferring ownership of the buffer from the application to the HDF5 library if the
application agrees not to discard the image until the file is closed.

FT Page 1 of 15

The HDF Group

May 23, 2011 RFCTHG 2011-05-12.v1

Use Case 2: Construction of an HDF5 File Image

Construct an image of an HDF5 file in memory for transmission from one process to another. As the
purpose of the operation is to avoid file system 1/0, the solution must avoid file I/O unless requested.

At a minimum, this requires transferring the image from HDF5 ownership (i.e. responsibility for
discarding) to application ownership.

The safe way to do this is with a copy into a buffer allocated by the application. While this must be
supported, it will be slow for large files, and thus more efficient means must be implemented as well.
At a minimum, this means that it must be possible for the HDF5 library to allocate a buffer, write an
image of an HDF5 file, and then pass ownership of the buffer to the application.

It may be useful to support passing an HDF5 file image back and forth between the HDF5 Library and
the application, possibly with modifications on ether end. However, this is not required, and should
not be done unless it can be done cheaply.

Use Case 3: Template File

Either to avoid numerous collective calls (PHDF5), or to standardize the structure of HDF5 files, when
creating a new file, write the contents of a template file containing the desired group, data type, and
possibly definitions, and then open the file. (It should be mentioned that we have no plans for
implementing support for this use case at this time - it is offered solely as a point to consider in
designing our API extensions/modifications)

4 Approach

As currently envisioned, the HDF5 file image creation and read operations will center on the core file
driver as a way of avoiding undesired file I/0. Thus, at first blush it would make sense to use API
additions/modifications specific to the core file driver.

However, supplying an initial image of a file at creation does have at least one other use case — that
of allowing the use of a template file containing initial datatype, group, and possibly dataset
definitions to either enforce uniformity of basic file structure or (in the parallel case) to avoid long
sequences of collective operations on metadata.

Mechanisms to allow the user application to obtain access to an HDF5 file image from the core file
driver without a memcpy() seem peculiar to the core file driver, as file drivers that actually store data
in a file system will typically have little if any of the file in core. The only point militating against a core
file driver specific API for this case is the possibility of future file drivers that also keep their data in
core (say a distributed core file driver for the parallel case).

In contrast, mechanisms to obtain a buffer containing an image of a file are generally applicable to all
file drivers, albeit unnecessary as (with the exception of the core file driver) the operation is easily
done via standard C library calls, if desired.

A final point in choosing our APl modifications is the desirability of extending the interface, rather
than modifying it so as to avoid breaking existing applications.

In the remainder of this RFC, | introduce several proposed APl extensions directed at supporting HDF5
file image creation and read operations.

I-T Page 2 of 15

The HDF Group

May 23, 2011 RFCTHG 2011-05-12.v1

5 New API Call Syntax

New API calls described in this document fall into two categories: low-level API routines that are
added to the main HDF5 library, and high-level APl routines added to the “lite” API in the high-level
wrapper library. The high-level API routines use the new low-level API routines, but present
frequently requested functionality in a convenient way for application developers’ use.

5.1 New Low-Level API Routines

These routines represent new functionality that extend the capabilities of the main HDF5 library,
allowing a memory image of an HDF5 file to be used when opening that file. These low-level routines
are designed to provide the core functionality required to support this feature, with popular and
convenient options provided in the high-level API routines described in the next section.

As the core file driver already supports creation of in memory images of HDF5 files, the basic
approach to opening an in memory image of an HDF5 file is pass the image to the core file driver, and
tell it to open it. We will do this by adding the H5Pget/set_file_image calls, which allow the user to
specify an initial file image for this and other purposes (see use cases in section 4, above).

Proposed syntax for the H5Pget/set_file_image calls is offered below.

5.1.1 HS5Pset_file_image

The H5Pset_file_image routine is designed to allow an application to provide the image for a VFD
to use as the initial contents of the file. This call is designed primarily for use with the core VFD, but
can be used with any VFD that supports using an initial file image when opening a file (described in
section 5.1.3, “The H5FD_FEAT_ALLOW_FILE_IMAGE flag”). Calling this routine makes a copy of the
file image buffer provided, using the file image allocation callbacks (described in section 5.1.4) for
allocating and releasing the memory used for copying the file image. Note that if the file image
allocation alloc_func callback returns a pointer that is the same value as the pointer passed in to
H5Pset_file_image, the copy operation is not performed by H5Pset_file_image.!
The signature of H5Pset_file_image is defined as follows:
herr_t HS5Pset file image(hid_t fapl_id, void *buf ptr, size t buf_len)

The parameters of H5Pset_file_image are defined as follows:

* fapl_id contains the ID of the target file access property list.

* buf_ptr supplies a pointer to the initial file image, or NULL if no initial file image is desired.

* buf_len contains the size of the supplied buffer, or 0 if no initial image is desired.

Note: if either the buf_len parameter is zero, or the buf_ptr parameter is NULL, no file image
will be set in the FAPL, and any existing file image buffer in the FAPL will be released, using the

! Avoiding the copy operation by using a custom alloc_func callback can be used as a mechanism for
transferring ownership of a buffer to the HDF5 library without making a copy, or for sharing a buffer
between the application and the HDF5 library. Pre-defined ways to perform some of these buffer
operations are described in section 5.2.1, describing the new H5LTopen_file_image routine.

|.g: Page 3 of 15

The HDF Group

May 23, 2011 RFCTHG 2011-05-12.v1

current file image allocation callbacks set for the FAPL, setting the FAPL’s file image buf_lento 0
and buf_ptr to NULL.

5.1.2 Hb5Pget_file_image

The H5Pget_file_image routine is designed to allow an application to retrieve a copy of the file
image designated for a VFD to use as the initial contents of the file. This routine uses the file image
allocation callbacks when allocating the buffer to return to the application. Note that if the file image
allocation alloc_func callback returns a pointer that is the same value as the pointer to the file
buffer currently set in the FAPL, the copy operation is not performed by H5Pget_file_image.

The signature of H5Pget_file_image is defined as follows:
herr_t H5Pget file image(hid_t fapl_id, void **buf ptr_ptr, size_t *buf_len_ptr)
The parameters of H5Pget_file_image are defined as follows:
* fapl_id shall contain the ID of the target file access property list.

* buf_ptr_ptr shall be NULL, or shall contain a pointer to a void*. If buf_ptr_ptr is not NULL,
on successful return, *buf_ptr_ptr shall contain the value of a pointer to a copy of the initial
image provided in the last call to H5Pset_init_image for the supplied fapl_id, or NULL if there
is no initial image set.

* buf_len_ptr shall be NULL, or shall contain a pointer to size_t. If buf_len_ptris not NULL, on
successful return, *buf_len_ptr shall contain the value of the buf_len parameter for the initial
image in the supplied fapl_id, which shall be 0 if no initial image is set.

5.1.3 The HSFD_FEAT_ALLOW_FILE_IMAGE flag

The HS5FD_FEAT_ALLOW_FILE_IMAGE flag will be added to the list of existing public VFD flags
(defined in H5FDpublic.h). A VFD that sets the HSFD_FEAT_ALLOW_FILE_IMAGE flag when its ‘query’
callback is called indicates that the file image set in the FAPL will be used as the initial contents of a
file.? If the VFD supports the HSFD_FEAT_ALLOW_FILE_IMAGE flag, and an initial file image is defined
by an application, the VFD should ensure that file creation operations (as opposed to file open
operations) bypass use of the file image, and create a new, empty file.?

5.1.4 Hb5Pset_file_image_alloc_callbacks

In order to provide an application with flexibility over how file image buffers are managed, callback
routines can be set by an application to control file image buffer allocation, re-allocation and release.
These routines are invoked whenever a new file image buffer is allocated (generally in support of
copying the buffer), an existing file image buffer is resized, or when a file image buffer is released

2 Support for setting an initial file image is designed primarily for use with the core VFD. However,
any VFD can indicate support for this feature by setting the H5FD_FEAT_ALLOW_FILE_IMAGE flag,
and copying the image in an appropriate way for the VFD (possibly by writing the image to a file and
then opening the file, etc).

3 Alternatively, when a file image is set and a new file is created with a VFD, the VFD behavior could
be defined to return an error. However, this behavior seems somewhat more user-friendly.

I-T Page 4 of 15

The HDF Group

May 23, 2011

RFCTHG 2011-05-12.v1

from use. The operation and return values of the allocation callbacks are identical to those of the
corresponding C standard library calls (i.e. malloc, realloc and free), although the parameters are
expanded (described below).

The signature of H5Pset_file_image_alloc_callbacks is defined as follows:

herr_t HS5Pset file image alloc _callbacks(hid_t fapl_id,

void *(*image alloc)(size_t size, unsigned file image op_ flags,
void *alloc_udata),

void *alloc_udata,

void *(*image realloc)(void *ptr, size t size, file image op_ flags,
void *realloc_udata),

void *realloc_udata,

void (*image free)(void *ptr, unsigned file_image op flags,
void *free_udata),

void *free_udata)

The parameters of H5Pset_file_image_alloc_callbacks are defined as follows:

fapl_id shall contain the ID of the target file access property list.

image_alloc shall contain a pointer to a function with (from the perspective of HDF5)
functionality identical to the standard C library malloc() call. The parameters to the
image_alloc callback are defined as follows:

O

O

size will contain the size of the image buffer to allocate, in bytes.

file_image_op_flags will be set with one or more flags (defined below) indicating
the operation being performed on the file image when this callback is invoked.

alloc_udata will be set with the value passed in for the alloc_udata parameter to
H5Pset_file_image_alloc_callbacks.

Setting image_alloc to NULL will indicate that the HDF5 library should invoke the
standard C library malloc() routine when allocating file image buffers.

alloc_udata shall contain a pointer value, potentially to user-defined data, that will be passed
to the image_alloc callback.

image_realloc shall contain a pointer to a function with (from the perspective of HDF5)
functionality identical to the standard C library realloc() call. The parameters to the
image_realloc callback are defined as follows:

O

O

O

ptr will contain the pointer to the buffer being resized.
size will contain the size of the image buffer to allocate, in bytes.

file_image_op_flags will be set with one or more flags (defined below) indicating
the operation being performed on the file image when this callback is invoked.

realloc_udata will be set with the value passed in for the realloc_udata parameter
to H5Pset_file_image_alloc_callbacks.

Setting image_realloc to NULL will indicate that the HDF5 library should invoke the
standard C library realloc() routine when resizing file image buffers.

2.5

The HDF Group

Page 5 of 15

May 23, 2011 RFCTHG 2011-05-12.v1

realloc_udata shall contain a pointer value, potentially to user-defined data, that will be
passed to the image_realloc callback.

image_free shall contain a pointer to a function with (from the perspective of HDF5)
functionality identical to the standard C library free() call. The parameters to the image_free
callback are defined as follows:

o ptr will contain the pointer to the buffer being released.

o file_image_op_flags will be set with one or more flags (defined below) indicating
the operation being performed on the file image when this callback is invoked.

o free_udata will be set with the value passed in for the free_udata parameter to
H5Pset_file_image_alloc_callbacks.

Setting image_free to NULL will indicate that the HDFS5 library should invoke the standard
C library free() routine when releasing file image buffers.

free_udata shall contain a pointer value, potentially to user-defined data, that will be passed
to the image_free callback.

The values that can be set for the file_image_op_flags parameter to all the callbacks above are
defined as follows:*

H5_FILE_IMAGE_PROPERTY_LIST_SET — This flag is passed to the image_alloc callback when
an image buffer is being copied while being set in a FAPL.

H5_FILE_IMAGE_PROPERTY_LIST_COPY —This flag is passed to the image_alloc callback when
an image buffer is being copied when a FAPL is copied.

H5_FILE_IMAGE_PROPERTY_LIST_GET —This flag is passed to the image_alloc callback when
an image buffer is being copied while being retrieved from a FAPL.

H5_FILE_IMAGE_FILE_OPEN — This flag is passed to the image_alloc callback when an image
buffer is copied during a file open operation.

H5_FILE_IMAGE_PROPERTY_LIST_CLOSE — This flag is passed to the image_free callback when
an image buffer is being released during a FAPL close operation.

H5_FILE_IMAGE_FILE_CLOSE — This flag is passed to the image_free callback when an image
buffer is being released during a file close operation.

5.1.5 Hb5Pget_file_image_alloc_callbacks()

The H5Pget file_image alloc_callbacks routine is designed to provide applications with the
functionality to query the existing file image allocation routines and user data pointers.

The signature of H5Pget_file_image_alloc_callbacks() is defined as follows

* We may need more/less of these flags.

> Note that there aren’t currently any flags defined to passing to the realloc_image callback, but those
could be added in the future and the file_image_op_flags parameter is included in that callback for
orthogonality, completeness and future expansion.

FT Page 6 of 15

The HDF Group

May 23, 2011 RFCTHG 2011-05-12.v1

herr_t H5Pset fapl core_alloc _callbacks(hid t fapl_id,

void *(**image alloc_ptr)(size t size, unsigned file image op_flags,
void *alloc_udata),

void **alloc_udata_ptr,

void *(**image realloc_ptr)(void *ptr, size t size,
file image op flags, void *realloc_udata),

void **realloc_udata ptr,

void (**image free ptr)(void *ptr, unsigned file image op_ flags,
void *free_udata),

void **free_udata ptr)

The parameters of H5Pget_file_image_alloc_callbacks() are defined as follows:

fapl_id shall contain the ID of the target file access property list.

image_alloc_ptr shall contain a pointer to pointer to function. Upon successful return,
*image_alloc_ptr shall contain the pointer passed as the image_alloc parameter in the last call
to H5Pset_file_image_alloc_callbacks() for the specified FAPL, or NULL if there has been no
such call.

alloc_udata_ptr shall contain a pointer to pointer to a void*. Upon successful return,
*alloc_udata_ptr shall contain the pointer passed as the alloc_udata parameter in the last call
to H5Pset_file_image_alloc_callbacks() for the specified FAPL, or NULL if there has been no
such call.

image_realloc_ptr shall contain a pointer to pointer to function. Upon successful return,
*image_realloc_ptr shall contain the pointer passed as the image_realloc parameter in the
last call to H5Pset_file_image_alloc_callbacks() for the specified FAPL, or NULL if there has
been no such call.

realloc_udata_ptr shall contain a pointer to pointer to a void*. Upon successful return,
*realloc_udata_ptr shall contain the pointer passed as the realloc_udata parameter in the last
call to H5Pset_file_image_alloc_callbacks() for the specified FAPL, or NULL if there has been
no such call.

image_free_ptr shall contain a pointer to pointer to function. Upon successful return,
*image_free_ptr shall contain the pointer passed as the image_free parameter in the last call
to H5Pset_file_image_alloc_callbacks() for the specified FAPL, or NULL if there has been no
such call.

free_udata_ptr shall contain a pointer to pointer to a void*. Upon successful return,
*free_udata_ptr shall contain the pointer passed as the free_udata parameter in the last call
to H5Pset_file_image_alloc_callbacks() for the specified FAPL, or NULL if there has been no
such call.

5.2 New High-Level API Routines

These high-level routines encapsulate the capabilities of routines in the main HDF5 library with
conveniently accessible abstractions.

FT Page 7 of 15

The HDF Group

May 23, 2011 RFCTHG 2011-05-12.v1

5.2.1 H5LTopen_file_image

The H5LTopen_image routine is designed to provide a convenient way to open an initial file image
with the core VFD. Flags to H5LTopen_file_image allow for various file image buffer ownership
policies to be requested conveniently.

The signature of H5LTopen_file_image is defined as follows:
hid_t H5LTopen file image(void *buf_ptr, size_t buf _len, unsigned flags)®
The parameters of H5LTopen_file_image() shall be defined as follows:

* buf_ptr shall contain a pointer to the supplied initial image. A NULL value is invalid and will
cause H5LTopen_file_image to fail.

* buf_len shall contain the size of the supplied buffer. A 0 value is invalid and will cause
H5LTopen_file_image to fail.

* flags shall contain a set of flags indicating restrictions on the use of the buffer, whether
HDF5 is to take control of the buffer, and how long the application promises to maintain the
buffer. Possible flags are as follows:

o HS5LT_FILE_IMAGE_DONT_COPY - Indicates that the HDF5 library should not copy the
file image buffer provided, but should use it directly. The HDF5 library will release it
when done, however. The supplied buffer must have been allocated via a call to the
standard C library malloc() or calloc() routines, as the HDF5 library will call free() to
release the buffer. In the absence of this flag, the HDF5 library will copy the buffer
provided.’

o HS5LT_FILE_IMAGE_DONT_RELEASE - Only valid when the
H5LT_FILE_IMAGE_DONT_COPY flag is also specified, this flag indicates that the HDF5
library should not attempt to release the buffer when the file is closed. In the absence
of this flag, the HDFS5 library will release the buffer after the file is closed.?

o HS5LT_FILE_IMAGE_ALLOW_WRITE - Indicates that the buffer may be modified by
HDF5. Absence of this flag indicates that the file image will only be read from.

o HSLT_FILE_IMAGE_DONT_RESIZE — Only valid when the
H5LT_FILE_IMAGE_ALLOW_WRITE flag is also specified, this flag indicates that any
write that requires a change in the file image buffer size should fail. In the absence of

® Note that there’s no way to specify a “backing store” file name in this definition of

H5LTopen_image, but that is a possible addition, if desired.

’ The H5LT_FILE_IMAGE_DONT_COPY flag provides an application with the ability to “give ownership”
of a file image buffer to the HDF5 library.

® Using H5LT_FILE_IMAGE_DONT_RELEASE (with the required H5LT_FILE_IMAGE_DONT_COPY flag)
provides a way for the application to specify a buffer that the HDF5 library can use for opening and
accessing as a file image, but letting the application retain ownership of the buffer. If the
H5LT_FILE_IMAGE_ALLOW_WRITE is given also, the HS5LT_FILE_IMAGE_DONT_RESIZE is
recommended as well, so that the HDFS5 library doesn’t attempt to re-allocate the file image buffer.

FT Page 8 of 15

The HDF Group

May 23, 2011 RFCTHG 2011-05-12.v1

this flag, the file image may be re-allocated into a larger or smaller buffer, and the
write performed as usual.

The return value of H5LTopen_file_image will be a file ID on success, or a negative value on failure.
The file ID returned should be closed with H5Fclose.
5.2.2 H5LTget_file_image

The purpose of the H5LTget_file_image routine is to provide a simple way to retrieve a copy of the
image of an existing, open file. This routine can be used with files opened using any VFD.

The signature of H5LTget_file_image shall be defined as follows:
ssize t H5LTget file image(hid t file id, void *buf _ptr, size t buf_len)
The parameters of H5LTget_file_image shall be defined as follows:
* file_id shall contain the ID of the target file

* buf_ptr shall contain a pointer to the buffer into which the image of the HDFS5 file is to be
copied. If buf_ptris NULL, no data will be copied, but the return value will still indicate the
buffer size required (or a negative value for an error).

* buf_len shall contain the size of the supplied buffer.

The return value of HS5LTget_file_image will be a positive value indicating the length of buffer
required to store the file image (i.e. the length of the file®), or a negative value if the file is too large
to store in memory or on failure.

6 New API Call Semantics

6.1 Core Allocation Callback Semantics

The H5Fget/set_file_image_alloc_callbacks() API calls allow the application to hook the memory
management calls in the core file driver (and if desired, in any future driver that keeps the entire file
in core).

From the perspective of the HDF5 library, the supplied image_alloc(), image_realloc(), and
image_free() drivers must function identically to the C standard library malloc(), realloc(), and free()
calls.

What happens on the application side can be much more nuanced, particularly with the ability to
pass user data to the callbacks.

For example, the application can use the file_image_op_flags parameter of the image_free() call to
allow it to grab the buffer containing the final in memory image of the file created by the core file
driver just before the HDF5 library closes the file. At this point the application can do whatever it
wants with this buffer, as HDF5 thinks it has been freed.

? The current file size can also be obtained via a call to H5Fget _filesize.

FT Page 9 of 15

The HDF Group

May 23, 2011 RFCTHG 2011-05-12.v1

Further, if the application doesn’t want to keep track of all the different core file drivers, it can
increment all malloc requests by sizeof(size_t), and use the first sizeof(size_t) bytes of the buffer to
store the buffer length — offsetting the pointer returned to the core file driver by sizeof(size_t) bytes.

As should be obvious from the above, the core allocation callbacks offer clean way to obtain an image
of an HDFS5 file from the core file driver without the cost of a memcpy(). Further, in combination with
the initial file image facility discussed below, it provides us with a clean mechanism for passing a
buffer that contains an HDF5 file back and forth between the application and the HDF5 library.

6.2 Initial File Image Semantics

One can argue whether creating a file with an initial file image is closer to creating a file or opening
one. While | tend to view it as being closer to a file create, the consensus seems to be that it is closer
to a file open. Bowing to the consensus, we shall require that the initial image only be set for calls to
H5Fopen().

Whatever our convention, from an internal perspective, it is a bit of both. Conceptually, we will
create a file on disk, write the supplied image to it, close it, open it as an HDF5 file, and then proceed
as usual.’® This process is similar to a file create, as we are creating a file that didn’t exist on disk to
begin with and writing a bunch of data to it. Also, we must verify that no file of the supplied name is
open. However, it is also similar to a file open, as we must read the superblock and handle the usual
file open tasks.

Implementing the above sequence of actions has a number of implications on the behavior of the
H5Fopen() call:

1. H5Fopen() must fail if the target file driver doesn’t support the “allow file image” VFD flag and
a file image is specified in the FAPL.™

2. If the target file driver supports the “allow file image” VFD flag, H5Fopen() must fail if the file
is already open, or if a file of the specified name exists.

3. Evenif the above constraints are satisfied, H5SFopen() must still fail if the image doesn’t
contain a valid (or perhaps just plausibly valid) image of an HDF5 file. In particular, the
superblock must be processed, and the file structure be set up accordingly.

In addition to the effects on H5Fopen(), there is also the matter of management of the supplied
buffer when H5LTopen_file_image() is used instead of H5Fopen(). As management of the buffer will
be driven in large part by the flags specified in the call to H5LTopen_file_image() call, | reproduce the
list of flags here:

* HS5LT_FILE_IMAGE_DONT_COPY - Indicates that the HDF5 library should not copy the file
image buffer provided, but should use it directly. The HDF5 library will release it when done,
however. The supplied buffer must have been allocated via a call to the standard C library
malloc() or calloc() routines, as the HDF5 library will call free() to release the buffer. In the
absence of this flag, the HDF5 library will copy the buffer provided.

1% Although this is not true when the core VFD is used.
1 Note that to support stackable VFDs, internal VFDs will have to be able to construct this flag at run
time by querying their descendants.

|.g: Page 10 of 15

The HDF Group

May 23, 2011 RFCTHG 2011-05-12.v1

* HS5LT_FILE_IMAGE_DONT_RELEASE - Only valid when the H5LT_FILE_IMAGE_DONT_COPY flag
is also specified, this flag indicates that the HDF5 library should not attempt to release the
buffer when the file is closed. In the absence of this flag, the HDF5 library will release the
buffer after the file is closed.

* HS5LT_FILE_IMAGE_ALLOW_WRITE - Indicates that the buffer may be modified by HDF5.
Absence of this flag indicates that the file image will only be read from.

* HS5LT_FILE_IMAGE_DONT_RESIZE — Only valid when the H5LT_FILE_IMAGE_ALLOW_WRITE
flag is also specified, this flag indicates that any write that requires a change in the file image
buffer size should fail. In the absence of this flag, the file image may be re-allocated into a
larger or smaller buffer, and the write performed as usual.

The application is responsible for discarding the buffer unless the H5LT_FILE_IMAGE_DONT_COPY
and H5LT_FILE_IMAGE_DONT_RELEASE flags are set. In this case the driver must discard the buffer
when done. <<More discussions here? — QAK>>

7 Application of API Changes to the Primary Use Cases

Only the first two of the use cases listed above are of interest to LLNL — thus only these two cases are
addressed below.

7.1 Reading an in Memory HDFS5 File Image

HDF5 already allows the core file driver to be initialized from a file. When implemented, the new
H5Pset_file_image() API call will allow the core file driver to be initialized from an application
provided buffer. The following pseudo code illustrates its use:

<allocate and initialize buf_len and buf>
<allocate fapl id>
<set fapl to use core file driver>

H5Pset file image(fapl _id, &buf, buf len);

<open file, read as desired, close>
<discard buf>

This pseudo code shows how a buffer can be passed back and forth between application and HDF5
library.

/* initial declarations */
void * image ptr;
size t image len;

void image free(void *ptr, unsigned file image op_ flags, void *udata)
{
if(file_image op_flags == H5 FILE IMAGE_FILE CLOSE)
*(void **)udata = ptr;
else
free(ptr);

|.u: Page 11 of 15

The HDF Group

May 23, 2011 RFCTHG 2011-05-12.v1

/* allocate image in application and initialize as desired */
<allocate and initialize image and image_ len>

/* pass image off to core file driver */
<allocate fapl id and set to use core file driver>

H5Pset file image alloc_callbacks(fapl_id, NULL, NULL, NULL, NULL,
image free, &image ptr);
H5Pset file image(fapl_id, image_ptr, image len);

<open core file using fapl _id, modify it, flush it>

/* pass image back to application */
HS5Fget filesize(fid, &image_len);

<close core file>
/* image ptr now contains a pointer to the final version of the core file.

*/
<modify *image ptr as desired>

/* pass image back to core file driver */
H5Pset file image(fapl _id, image_ ptr, buf _len);

<open core file using fapl_id, modify it, close it>
/*image ptr again contains a pointer to the final version of the core file

*/
<use it, and then discard it via free()>

The pseudo code below shows the same operations, using H5LTopen_file_image instead of coding file
image allocation callbacks in the application:

/* initial declarations */
void * image ptr;
size t image len;

/* allocate image in application and initialize as desired */
<allocate and initialize image and image_ len>

/* open image with core file driver, indicating that the application will
still “own” the image buffer */
fid = HS5LTopen_file image(image ptr,image_1len,
H5LT_FILE_IMAGE_DONT_COPY | H5LT_FILE_IMAGE_DONT_RELEASE |
H5LT_FILE_IMAGE_ALLOW_WRITE | H5LT_FILE_IMAGE_DONT_RESIZE);

<modify file, close it>
/* image ptr now contains a pointer to the final version of the core file.

*/

<modify *image ptr as desired>

|.g: Page 12 of 15

The HDF Group

May 23, 2011 RFCTHG 2011-05-12.v1

/* pass image back to core file driver */

fid = HS5LTopen_file image(image ptr,image 1len,
H5LT_FILE_IMAGE_DONT_COPY | H5LT_FILE_IMAGE_DONT_RELEASE |
H5LT_FILE_IMAGE_ALLOW_WRITE | H5LT_FILE_IMAGE_DONT_RESIZE);

<modify file, close it>
/* image ptr again contains a pointer to the final version of the core file

*/
<use it, and then discard it via free()>

Note that although the code above allows the file image to be modified when the image is opened
with H5LTopen_file_image, it doesn’t allow re-sizing the image buffer.

Finally, the pseudo code below illustrates using H5LTopen_file_image to open a R/W file with a R/O
buffer that must be copied on file open.

<allocate and initialize buf_len and buf_ptr>
fid = H5LTopen_file_image(buf_ptr, buf_len, H5LT_FILE_IMAGE_ALLOW_WRITE);

<discard buf_ptr>
<use core file as desired, and then close>

In the above example, the core file driver allocates its own buffer, initializes it from the initial image,
and then proceeds as usual, reallocating the private buffer as needed as the image grows.

7.2 In Memory HDFS5 File Image Construction

HDF5 already supports construction of an image of an HDF5 file in central memory. Thus the only
issue is how to allow the application access to the image without first writing it to disk.

The new H5LTget_file_image() call will allow the application to obtain a copy of the file’s image. The
following code fragment illustrates its use:

<Open and construct the desired file with the core file driver>

H5Fflush(fid);

H5Fget filesize(fid, &size);

buffer_ ptr = malloc(size);
H5LTget file image(fid, size, buffer_ ptr);

While the use of H5LTget_file_image() may be acceptable for small images, for large images, the cost
of the malloc() and memcpy() may become excessive. To address this issue, the
H5Pset_file_image_alloc_callbacks() call allows the application to manage dynamic memory
allocation for the library. The following code fragment illustrates its use.

void * image ptr;

void image free(void *ptr, unsigned file image op_ flags, void *udata)

{
if(file_image op_flags == H5 FILE IMAGE_FILE CLOSE)
*(void **)udata = ptr;

I-B: Page 13 of 15

The HDF Group

May 23, 2011 RFCTHG 2011-05-12.v1

else
free(ptr);
}

<allocate fapl id>

H5Pset file image alloc_callbacks(fapl_id, NULL, NULL, NULL, NULL,
image free, &image ptr);

<open core file using fapl_id, write file, flush it>
H5Fget filesize(fid, &size);

<close file>
/* image ptr now contains a pointer to the final version of the core file */

<use it, and then discard it via free()>

The above code fragment gives the application full ownership of the buffer used by the core file
driver after the file is closed. Recall that if read access to the buffer is sufficient, the
H5Fget_vfd_handle() API call to get access to the core file driver’s buffer pointer is an alternate
solution.

8 Recommendation

Unless | have missed something major, the APl extensions proposed in this RFC should meet LLNL’s
needs. The main question remaining is how well, and what can be made better. For this | will need
another round of reviews.

The reader will note that the set of flags supported in the H5LTopen_file_image() call offer more
features than are strictly required for LLNL’s purposes. However, the overhead for implementing the
extra capability should be small and benefit the overall HDF5 community.

Acknowledgements

This work was supported by Lawrence Livermore National Laboratory (LLNL). Any opinions, findings,
conclusions, or recommendations expressed in this material are those of the author[s] and do not
necessarily reflect the views of LLNL.

Revision History

May 12, 2011: Version 0 -- sent to Quincey for comment and general direction check.

May 23, 2011: Version 1 -- Incorporates comments and course corrections from email
exchanges with Mark Miller and other LLNL staff. Added use cases, core
allocation callbacks. General rewrite.

|.g: Page 14 of 15

The HDF Group

May 23, 2011

RFCTHG 2011-05-12.v1

May 25, 2011:

May 26, 2011:
May 26, 2011:

Version 2 -- Incorporates more comments and course corrections from
email exchanges with Mark Miller and discussions with Quincey.

Version 3 — Major overhaul (by Quincey) after discussions with Quincey.

Version 4 — Tweaks (by Quincey) after discussions w/Mark Miller.

The HDF Group

Page 15 of 15

