
Steve Langer1, Bert Still1, Denise Hinkel1, Bruce Langdon1,
and Ed Williams1

1Lawrence Livermore National Laboratory

LLNL-PRES-473692

This work was performed under the auspices of the Lawrence Livermore National Security, LLC,
(LLNS) under Contract No. DE-AC52-07NA27344

A pF3D case study of obtaining good I/O performance
while running on over 100 thousand processors

Attaining good I/O rates with more than 100,000 processes
is possible, but not easy

• Lustre, GPFS, and Panasas parallel file systems have different characteristics.
Plan on tuning your I/O scheme for each file system type.

• The file systems at each site have their own strengths and weaknesses. Plan on
tuning your I/O scheme when you go to a new site even if it uses a parallel file
system your are familiar with.

• Reading small input files can be challenging when using many processes.
• Files should be read and written sequentially to achieve high performance.
• Checkpoint files may be large enough that file per process I/O will be fast.
• Some data sets used for physics analysis are small and must be saved

frequently. Storing data from several processes in a shared file helps
performance for these smaller data sets.

• It has been much easier to tune I/O code written in the yorick interpreted
language than it would have been to tune compiled code.

LLNL-PRES-473692

Lustre – an example of a parallel file system

LLNL-PRES-473692

• The metadata server handles creating,
opening, and closing files, maintaining
directory structures, controlling access
permissions, etc.

• Object Storage Servers are responsible
for reading and writing data.

• Each OSS has several RAID controllers.
• Each RAID controller handles I/O to

several disks.
• A parallel file system may contain

10,000 disks.
• Lustre clients run on the compute

cluster, typically on dedicated I/O
nodes.

• Individual processes perform I/O by
sending requests to the I/O nodes.

Understanding Lustre Filesystem Internals by Feiyi Wang,
Sarp Oral, and Galen Shipman (NCSA) and Oleg Drokin, Tom
Wang, Isaac Huang (Sun Microsystems Inc.)

Characteristics of parallel file systems

• Parallel file systems achieve high I/O rates by writing to large numbers of
disks simultaneously.

• The key to high performance for large files is assuring data is written in large
contiguous blocks and that processors do not contend with one another for
access to the same file.

• Writing a PDB file in yorick produces mostly sequential I/O.
• Unless care is taken, writing an hdf5 file will involve a lot of hopping back

and forth.
• Metadata operations may take longer than writing data when working with

small files. The best approach for small files is to find some way to merge
them into a few larger files.

LLNL-PRES-473692

pF3D simulates interactions between laser beams and
the plasma in a NIF hohlraum

LLNL-PRES-473692

• The walls are heated to roughly 300 eV and
emit x-rays.

• The laser light can interact with fluctuations
in the ion or electron density to scatter
some light back out of the hohlraum.

• The 44.5 and 50 degree cones are called
outer beams and the 23.5 and 30 degree
cones are called inner beams.

• The laser beams enter through holes in
the ends of the hohlraum.

• There are 192 beams in 48 beam
clusters.

• The plasma in the hohlraum is heated
to a few keV.

• The laser beams deposit their energy
near the wall of the hohlraum.

pF3D is a multi-physics code used to simulate laser-plasma
interactions

• Multi-material Eulerian hydrodynamics on a regular Cartesian grid
• Heat conduction
• Wave solvers for the laser light, Stimulated Brillioun Backscatter, Stimulated

Raman Backscatter, Stimulated Raman Forwardscatter.
• Each light wave has two polarizations.
• Also solve for electron plasma wave and ion-acoustic wave amplitudes.
• Wave coupling is solved in the paraxial approximation using 2D FFTs.
• The light calculation is sub-cycled. There are 25-50 light cycles per hydro

step, so the light computation dominates the run time.
• Flexible input decks, graphics, and I/O are provided by the yorick interpreted

language (yorick.sf.net).
• pF3D uses domain decomposition and MPI message passing to achieve

parallelism.

LLNL-PRES-473692

The backscattered light has a complex spatial structure

pF3D has run large simulations on several systems

• pF3D simulations require zone sizes comparable to the 0.35 μm laser
wavelength. Laser beams are ~ 1 mm across and travel up to 7 mm. Simulating
a full beam requires 50 billion or more zones.

• Full beam simulations are run at key times for the most interesting designs to
give the best possible estimate of the amount of SRS and SBS.

LLNL-PRES-473692

simulation type

Outer beam (50 deg) Inner beam
(30 deg)

Inner beam (30
deg)

3 beams (23
and 30 deg)

waves SBS SBS+SRS SBS+2*SRS SRS

system LLNL bgl LLNL juno LLNL dawn ANL intrepid

processors 192K cores 16K cores 144K cores 160K cores

processor type
0.7 GHz BlueGene/L 2.2 GHZ AMD

Barcelona
0.85 GHz
BlueGene/P

0.85 GHz
BlueGene/P

interconnect
3D torus Infiniband fat

tree
3D torus 3D torus

zones
22 billion 55 billion 55 billion 110 billion

zones per core 0.11x106 3.4x106 0.37x106 0.67x106

There are several popular I/O strategies

• In the N-to-N strategy, each process writes a separate file.
– I/O can be performed using familiar Posix calls.
– There is no contention for access to files
– There are a lot of metadata operations due to the large file count.

• In the N-to-1 strategy, all processes share a single file.
– This approach normally uses MPI-I/O.
– I/O is a collective operation.
– MPI-I/O coordinates access to the shared file.
– Data is transposed over the interconnect so that it can be written sequentially.
– LANL has implemented a 1-to-M layer beneath MPI-I/O.

• In the N-to-M strategy, I/O from N processes is split among M files.
– This could be done by having each process in an “I/O group” open the shared file sequentially

to append its portion of the data.
– An alternative is to designate one process as the “group leader” for each file. The other

members of the group send their data to the group leader via MPI messages and only the group
leader writes to the file. This reduces the metadata operations by a factor of M compared to the
previous alternative.

• Given the right circumstances and a careful implementation, all three strategies work
well.

LLNL-PRES-473692

pF3D uses N-to-N I/O for restart dumps

• pF3D writes the state of each process to a separate PDB file to create a restart
dump (N-to-N strategy).

• Restart dumps permit recovery from hardware or system software errors and
permit the resumption of a run after the end of a batch time slot.

• A restart dump may be 50 TB for a large run, so high I/O rates are required.
• A restart may take an hour to write, even with a good I/O strategy.
• The checkpoint interval is chosen to balance time spent writing dumps and the

time that is lost when we “rewind” to a previous dump after a crash.
• All state variables are known to yorick, so restart dumps can be written in

interpreted code.
• On several file systems, performance is better if only a subset of the processes

write their restart dumps at the same time. pF3D has several options for
selecting sets of processes which write their files simultaneously.

LLNL-PRES-473692

In memory checkpointing using SCR allows pF3D to
run more efficiently

• Restart dumps may take up to a third of the run time on systems with relatively
short MTBIs.

• Adam Moody’s SCR lets pF3D write checkpoints to a RAM disk. SCR splits
checkpoints into chunks with parity information and distributes them across
several nodes. If a node fails, SCR can build a complete checkpoint on disk
from the data on nodes that are still working.

• A checkpoint can be written to RAM disk in a few seconds so pF3D writes a
dump on every time step when using SCR. When a job crashes, we have a
dump that is no more than 30 minutes old (i.e. one time step).

• Using SCR nearly doubled the efficiency of pF3D during the 16K process juno
run.

• SCR is not available on BlueGene systems because all information on the
nodes is gone as soon as a job crashes. On TLCC systems, the OS is still
running on nodes which did not have errors.

• SCR can also use the flash disk on coastal. Flash disk is an interesting
possibility for checkpointing on exascale systems.

LLNL-PRES-473692

pF3D chose the N-to-M I/O strategy to save diagnostic
data

• pF3D periodically saves diagnostic information to permit post-run analysis. As an
example, saving the SRS field on the entrance plane as a function of time allows us to
calculate the SRS spectrum and compare it to data.

• Several years ago, pF3D gathered the information for a “spec dump” to a single
processor and then wrote it to disk (our version of N-to-1). It takes a long time to move
all the required data in a large run to a single processor.

• In our N-to-M scheme, processes are split up into I/O groups of N/M processes which
share an output file. Messages to coordinate the I/O are passed using mpy, yorick’s MPI
package. The time to perform the I/O is now much shorter, making it feasible to save
“spectral dumps” frequently.

• Several variants of this scheme were tried. Our final choice involved each process
creating an “in memory file” containing its data and sending that file to its I/O group
leader as a single message. The group leader writes each incoming “file” as a single
variable in the PDB file for its group.

LLNL-PRES-473692

GPFS challenges on Intrepid

• pF3D normally writes all the files in a dump set to the same directory. That makes it
easy to delete a dump or list a directory to see if all files are present.

• This approach gives good performance on Lustre file systems at LLNL and SNL and on
Purple’s GPFS file system.

• When we use this approach to write a dump set to Intrepid’s GPFS, the performance is
up to 100X slower than it should be.

• Lustre handles file creation using a single metadata server and the creation of many files
in a single directory is not a performance problem.

• GPFS has distributed metadata operations. A GPFS client has to acquire a lock on the
directory before it can create a file. There is so much contention for the lock on Intrepid
that it nearly serializes the I/O.

• We spent ~1 day modifying our I/O package (interpreted code in yorick) to make a
directory per process during the startup phase of our run. Each process then writes its
files to its private directory.

• GPFS on Intrepid has a limit of 64K files per directory. Process zero creates K (much
less than N-processes) upper level directories, then K processes create the per-process
directories within them in parallel.

LLNL-PRES-473692

I/O is performed via a multi-stage algorithm into multidomain
files

rank 0

I/O
 g

ro
up

 le
ad

er
s

I/O group members /pfs/.../seqM/

file0000

file0001

file0002

file0003

file0004

file0005

file0006

On LUSTRE filesystems, a single directory can be shared among all groups.
On GPFS, this is a performance bottleneck.

I/O performance is significantly improved on GPFS by using
separate directories

rank 0

I/O
 g

ro
up

 le
ad

er
s

I/O group members /pfs/.../
grp0/seqM/file0000

grp1/seqM/file0001

grp2/seqM/file0002

grp3/seqM/file0003

grp4/seqM/file0004

grp5/seqM/file0005

grp6/seqM/file0006

This removes the bottleneck by separating the writes into different directories.

I/O performance using Lustre and GPFS

LLNL-PRES-473692

• I/O rates on Intrepid are unacceptably low with shared directories.
• Switching to private directories increased write rates for history and viz dumps

by 20X or more and increased the rate for restart files by nearly 10X.
• Restart rates are high for all runs other than Intrepid with shared directories.
• Lustre and GPFS deliver similar rates for very large jobs.
• Intrepid delivers good rates for viz and hist files when using both BG specific

I/O groups and private directories.
• Dawn with BG specific I/O groups delivers 44% of the hist rate and 67% of

the viz rate of the tuned Intrepid run. The relative performance for small and
large data sets differs between Dawn and Intrepid.

job name machine processes I/O group dir per hst size viz size restart size hst rate viz rate rst rate
assign process GB GB GB GB/s GB/s GB/s

tg30g3_3d59 dawn 147456 generic no 25.4 293 15925 0.124 0.395 14.66
bench_ltr dawn 32768 BG no 4.77 40.1 2078 0.165 0.702 6.39
bench_ltr intrepid 16384 BG no 3.43 20.2 1040 0.0144 0.052 0.59
bench_ltr intrepid 16384 BG yes 3.43 20.2 1040 0.374 1.043 5.56
trip_3d04 intrepid 163840 generic yes 6.23 48000 0.061 16.23

Darshan logs from Argonne help diagnose I/O
problems.

• The upper run used shared directories and generic I/O group assignment.
– The run took 70 minutes and wrote one restart dump.
– The erratic start times for the writes reflect contention for the lock.

• The lower run used per-process directories and BG specific I/O groups.
– The run took 48 minutes and wrote two restart dumps.
– Writes start simultaneously.

LLNL-PRES-473692

pF3D Startup I/O

• Each pF3D process reads ~20 yorick “.i” files during startup. These are similar
to the “.py” files read by a Python-based application.

• When pF3D reads its startup files, the file system sees a large number of
independent requests to read the same set of 20 files.

• Each pF3D process also reads a data file with the temperature and density
profiles of the plasma.

• All processes read a few parameters from the “beam file”.
• Processes on the “entrance plane” read the laser intensity pattern from the

“beam file”.
• pF3D can read these files from the home directory, the project directory

(/usr/gapps/pf3d at LLNL), or the parallel file system.
• pF3D can also effectively use Lustre for the beam file if caching is turned on.
• File caching at LLNL, SNL, and ANL allows all pF3D processes in a large run

to read the startup files in less than 20 minutes and there are no I/O errors.

LLNL-PRES-473692

I/O on Cielo

• Cielo has a Panasas parallel file system.
• The file system is large (currently two 4 PB file systems) and should have a

high bandwidth when all hardware is in place.
• Home directories and the LANL equivalent of /usr/gapps are (I believe) also

on Panasas file systems.
• The home and project directory file systems appear to cache recently read files

at all four sites. This means the files will be read from spinning disk only once.
If the files are cached on the disk servers, the file must be transferred across
the network once per process.

• If files are cached on the I/O nodes of the compute cluster, they are transferred
across the network once per I/O node. There are far fewer I/O nodes than
compute nodes, so this caching strategy is usually preferable.

• A 4k process pF3D run on Cielo that reads its startup files from the home
directories or from the /usr/projects file system will fail due to incorrect input
data.

LLNL-PRES-473692

udsl is your friend

• The way to get good performance for startup files on Cielo is to read them
from the /udsl file system.

• The udsl file system is mounted read/write on the Cielo front-end and login
nodes so that you can install files.

• udsl is mounted read-only on the compute nodes so that system software is
sure it is safe to cache files on the I/O nodes.

• The Cray system software caches files from /udsl in the memory of the I/O
nodes and delivers good read rates to the compute nodes.

• pF3D read its startup files from /udsl in 11.5 minutes on 64k processes and had
no errors.

• Reading data files is also an issue. When we attempted to read 150 MB of data
per process from a single data file on the Cielo parallel file system, it took so
long that we killed the job. It takes a few minutes to read the file from udsl.

• Large shared data files should be stored on /udsl.

LLNL-PRES-473692

Loading a program may also suffer from parallel I/O
issues

• BlueGene and Cray clusters load the executable very quickly using a broadcast
approach.

• pF3D is statically linked on Cielo and does not use any dlls. It loads quickly.
• Python-based codes normally load many dlls. The file activity to load the dlls

appears as independent I/O requests to the file system and will suffer from the
same problems as reading “.py” or “.i” files.

• dlls should be stored on /udsl.
• The easiest way to put the dlls on udsl is probably to build Python and your

code on udsl.

LLNL-PRES-473692

Startup I/O should be a collective operation

• All pF3D processes need to read the same “.i” files, the same laser
beam file, and the same plasma profile file.

• All the problems we ran into were due to the file system seeing many
seemingly independent I/O requests.

• There are advantages to knowing the author of your code framework –
we can personally appeal to Dave Munro to make changes to yorick.

• Dave recently released a new version of yorick in which loading a “.i”
file is a collective operation. The file is read once from disk to rank
zero, then broadcast to all the other processes.

• This change was enabled by another new feature of yorick – the ability
to perform file I/O on blocks of characters in memory.

• pF3D will use the new capabilities of yorick to perform a broadcast
load of the laser beam and plasma profile files.

LLNL-PRES-473692

Attaining good I/O rates with more than 100,000 processes
is possible, but not easy

• Lustre, GPFS, and Panasas parallel file systems have different characteristics.
Plan on tuning your I/O scheme for each file system type.

• The file systems at each site have their own strengths and weaknesses. Plan on
tuning your I/O scheme when you go to a new site even if it uses a parallel file
system your are familiar with.

• Reading small input files can be challenging when using many processes.
• Files should be read and written sequentially to achieve high performance.
• Checkpoint files may be large enough that file per process I/O will be fast.
• Some data sets used for physics analysis are small and must be saved

frequently. Storing data from several processes in a shared file helps
performance for these smaller data sets.

• It has been much easier to tune I/O code written in the yorick interpreted
language than it would have been to tune compiled code.

LLNL-PRES-473692

	Steve Langer1, Bert Still1, Denise Hinkel1, Bruce Langdon1, �and Ed Williams1�1Lawrence Livermore National Laboratory��
	Attaining good I/O rates with more than 100,000 processes is possible, but not easy
	Lustre – an example of a parallel file system
	Characteristics of parallel file systems
	pF3D simulates interactions between laser beams and the plasma in a NIF hohlraum
	pF3D is a multi-physics code used to simulate laser-plasma interactions
	The backscattered light has a complex spatial structure
	pF3D has run large simulations on several systems
	There are several popular I/O strategies
	pF3D uses N-to-N I/O for restart dumps
	In memory checkpointing using SCR allows pF3D to run more efficiently
	pF3D chose the N-to-M I/O strategy to save diagnostic data
	GPFS challenges on Intrepid
	I/O is performed via a multi-stage algorithm into multidomain files
	I/O performance is significantly improved on GPFS by using separate directories
	I/O performance using Lustre and GPFS
	Darshan logs from Argonne help diagnose I/O problems.
	pF3D Startup I/O
	I/O on Cielo
	udsl is your friend
	Loading a program may also suffer from parallel I/O issues
	Startup I/O should be a collective operation
	Attaining good I/O rates with more than 100,000 processes is possible, but not easy

