
Actions taken by HDF5 during a call to H5Dwrite(), and ways to improve performance with disabled
edge chunk filters

Neil Fortner
Quincey Koziol

When an application issues a call to H5Dwrite() for a chunked dataset, there are essentially four
possible actions the HDF5 library may take for each chunk. It may cache the chunk, in which case it is
read from disk if necessary and held in memory, and nothing is written to disk until the chunk is
flushed at a later time, at which point the entire chunk is written to disk. The library may also write the
entire chunk directly to disk, write only the portion of the chunk being modified to disk, or read the
entire chunk, modify it, and write it back out. Figure 1 illustrates which action the current version of the
library (1.8.6) takes in different situations.

The library generally does the best in can in each situation. However, with the new edge chunk feature,

it is possible for the library to unnecessarily perform the costliest action. This occurs when edge chunk
filters are disabled, part of an existing edge chunk is written to, and the cache is disabled. In this case,
it would be possible write only the selection to disk, but the library essentially does not realize that the
chunk is not filtered when it makes the decision to read/modify/write. We plan to address this issue
soon. The flowchart will then become as shown in figure 2.

Another issue arises when continuously appending to a dataset with edge chunk filters and the chunk
cache disabled. An append operation consists of two separate HDF5 library calls, H5Dset_extent() (or
H5Dextend()) and H5Dwrite(). Because they are separate calls, the cache must be clear and the dataset

must be in a consistent state after H5Dset_extent() returns and before H5Dwrite() begins. To do this,
the library must read the chunk, compress it, and write in back to disk in H5Dset_extent(), and then
read it right back to memory, decompress it, modify it, compress it, and write to disk in H5Dwrite().
This is clearly suboptimal as it should be possible to append to the dataset by reading, modifying,
compressing, and writing the chunk. Here are a few possible fixes for this:
1. Implement an H5Dappend() function to combine H5Dset_extent() and H5Dwrite() into a single

routine, which would then be intelligent enough to hold the chunk in memory until it has been
written to.

2. Modify H5Dwrite to take a filespace that may have a different extent from the actual dataset, in
which case it would extend the dataset to that size and write to it in a single operation, similar to
H5Dappend() above.

3. Modify the library to detect when the application is continuously appending to a dataset, and
automatically hold any newly complete chunks in cache until they are written to, with some sort
of timeout to prevent unintentional memory growth in case the prediction was wrong.

4. An application-side workaround is to detect when the dataset is about to expand to (or over) a
chunk border, close the dataset, open it again with the chunk cache enabled, perform the
append, then close and reopen with the chunk cache disabled.

